Package: CausalMBSTS 0.1.1
CausalMBSTS: MBSTS Models for Causal Inference and Forecasting
Infers the causal effect of an intervention on a multivariate response through the use of Multivariate Bayesian Structural Time Series models (MBSTS) as described in Menchetti & Bojinov (2020) <arxiv:2006.12269>. The package also includes functions for model building and forecasting.
Authors:
CausalMBSTS_0.1.1.tar.gz
CausalMBSTS_0.1.1.zip(r-4.5)CausalMBSTS_0.1.1.zip(r-4.4)CausalMBSTS_0.1.1.zip(r-4.3)
CausalMBSTS_0.1.1.tgz(r-4.4-any)CausalMBSTS_0.1.1.tgz(r-4.3-any)
CausalMBSTS_0.1.1.tar.gz(r-4.5-noble)CausalMBSTS_0.1.1.tar.gz(r-4.4-noble)
CausalMBSTS_0.1.1.tgz(r-4.4-emscripten)CausalMBSTS_0.1.1.tgz(r-4.3-emscripten)
CausalMBSTS.pdf |CausalMBSTS.html✨
CausalMBSTS/json (API)
NEWS
# Install 'CausalMBSTS' in R: |
install.packages('CausalMBSTS', repos = c('https://fmenchetti.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/fmenchetti/causalmbsts/issues
Last updated 3 years agofrom:04fd3bcb29. Checks:OK: 3 NOTE: 4. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 27 2024 |
R-4.5-win | NOTE | Oct 27 2024 |
R-4.5-linux | NOTE | Oct 27 2024 |
R-4.4-win | NOTE | Oct 27 2024 |
R-4.4-mac | NOTE | Oct 27 2024 |
R-4.3-win | OK | Oct 27 2024 |
R-4.3-mac | OK | Oct 27 2024 |
Exports:as.mbstsCausalMBSTSmcmcmodel
Dependencies:CholWishartclicolorspacecurlfansifarverforecastfracdiffgenericsggplot2gluegtableisobandjsonliteKFASlabelinglatticelifecyclelmtestmagrittrMASSMatrixmgcvMixMatrixmunsellnlmennetpillarpkgconfigquadprogquantmodR6RColorBrewerRcppRcppArmadillorlangscalestibbletimeDatetseriesTTRurcautf8vctrsviridisLitewithrxtszoo